שורה 1: |
שורה 1: |
− | '''השפעות החוק השני של התרמודינמיקה בביולוגיה''' הוא תחום חקר ההשפעות של [[החוק השני של התרמודינמיקה]] בתחומי הביולוגיה ובמיוחד בתחום ה[[אקולוגיה]]. החוק עצמו ובעיקר ניסוחים מאוחרים יותר שלו, הוא בעל השפעות נרחבות על ההבנה של היצורים החיים כמו גם של [[המערכת האקולוגית]], שבמינוח [[תרמודינמיקה|תרמודינמי]] מהוות דוגמאות של [[מערכת מפזרת|מערכות מפזרות]]. | + | '''השפעות החוק השני של התרמודינמיקה בביולוגיה''' הוא תחום חקר ההשפעות של [[החוק השני של התרמודינמיקה]] בתחומי הביולוגיה ובמיוחד בתחום ה[[אקולוגיה]]. החוק עצמו ובעיקר ניסוחים מאוחרים שלו, הוא בעל השפעות נרחבות על ההבנה של היצורים החיים כמו גם של [[המערכת האקולוגית]], שבמינוח [[תרמודינמיקה|תרמודינמי]] מהוות דוגמאות של [[מערכת מפזרת|מערכות מפזרות]]. |
| | | |
− | כבר בשנת 1886 הצביע הפיזיקאי בולמצן מצביע על כך שהמאבק בין היצורים החיים הוא על [[אקסרגיה]] ועל הורדת אנטרופיה. | + | כבר בשנת 1886 הפיזיקאי בולמצן מצביע על כך שהמאבק בין היצורים החיים הוא על [[אקסרגיה]] ועל הורדת אנטרופיה. |
| | | |
− | בשנת 1944 שרדינגר (Erwin Schrödinger) כתב ספר בשם "What is Life? " שבו הוא ניסה לקשור בין תהליכים ביולוגיים לבין פיזיקה וכימיה. שרדינגר מבחין בין היכולת של החיים לקיים "סדר מתוך סדר" (התהליך הגנטי של הורשת תכונות ההורים לצאצאים באמצעות הגנים), ובין היכולת של החיים לקיים "סדר מתוך אי סדר" במבט ראשון, נראה כי היצורים החיים מפרים את החוק השני של התרמודינמיקה משום שהם מצליחים לייצר סדר ומערכות מורכבות מתוך אי הסדר. לדוגמה הצמחים הם מבנה מוסדר מאוד אשר מסונתזים מתוך מולקולות ואטומים בלתי מסודרים סביבם. | + | בשנת 1944 שרדינגר (Erwin Schrödinger) כתב ספר בשם "What is Life? " שבו ניסה לקשור בין תהליכים ביולוגיים לבין פיזיקה וכימיה. שרדינגר מבחין בין היכולת של החיים לקיים "סדר מתוך סדר" (התהליך הגנטי של הורשת תכונות ההורים לצאצאים באמצעות הגנים), ובין היכולת של החיים לקיים "סדר מתוך אי סדר". במבט ראשון, נראה כי היצורים החיים מפרים את החוק השני של התרמודינמיקה משום שהם מצליחים לייצר סדר ומערכות מורכבות מתוך אי הסדר. לדוגמה, הצמחים הם מבנה מוסדר מאוד אשר מסונתזים מתוך מולקולות ואטומים בלתי מסודרים סביבם. |
| | | |
− | הפתרון לפרדוקס לכאורה זה הוא שהחיים נמצאים בתוך שטף של אנרגיה וחומר שמקורם הוא בשמש ומגיע לכלל היצורים החיים באמצעות ה[[ייצור ראשוני|יצרנים הראשוניים]]. היצורים החיים נשארים בחיים ומשמרים מצב פנימי בעל סדר גבוה על ידי לקיחת אנרגיה מהחוץ. לכן ניתן להסתכל על החיים (כיחידים או כקבוצה) כעל מבנה מפזר ששומר על סדר פנימי באמצעות ייצור אנטרופיה גבוה יותר במערכת הגדולה יותר שמקיפה אותו. | + | הפתרון לפרדוקס לכאורה זה הוא שהחיים נמצאים בתוך שטף של אנרגיה וחומר שמקורם בשמש ומגיע לכלל היצורים החיים באמצעות ה[[ייצור ראשוני|יצרנים הראשוניים]]. היצורים החיים נשארים בחיים ומשמרים מצב פנימי בעל סדר גבוה על ידי לקיחת אנרגיה מהחוץ. לכן ניתן להסתכל על החיים (כיחידים או כקבוצה) כעל מבנה מפזר ששומר על סדר פנימי באמצעות ייצור אנטרופיה גבוה יותר במערכת הגדולה יותר שמקיפה אותו. |
| | | |
| החוקרים אריק שניידר וג'יימס קיי טוענים במאמר משנת 1994 כי קיימת התפתחות תרמודינמית של מספר מערכות שעוברות אבולוציה, הם מנסחים מחדש את החוק, ומרחיבים אותו למערכות רחוקות משיווי משקל. הם מנסים לנסח באמצעות החוק את הקשרים בין אבולוציה, מורכבות ומערכות אקולוגיות.<ref name="Schneider_Kay_1994">[http://www.nesh.ca/jameskay/www.fes.uwaterloo.ca/u/jjkay/pubs/Life_as/text.html Life as a Manifestation of the Second Law of Thermodynamics], Eric Schneider and James Kay, Mathematical and Computer Modelling 19(6-8):25-48. 1994</ref> | | החוקרים אריק שניידר וג'יימס קיי טוענים במאמר משנת 1994 כי קיימת התפתחות תרמודינמית של מספר מערכות שעוברות אבולוציה, הם מנסחים מחדש את החוק, ומרחיבים אותו למערכות רחוקות משיווי משקל. הם מנסים לנסח באמצעות החוק את הקשרים בין אבולוציה, מורכבות ומערכות אקולוגיות.<ref name="Schneider_Kay_1994">[http://www.nesh.ca/jameskay/www.fes.uwaterloo.ca/u/jjkay/pubs/Life_as/text.html Life as a Manifestation of the Second Law of Thermodynamics], Eric Schneider and James Kay, Mathematical and Computer Modelling 19(6-8):25-48. 1994</ref> |
שורה 14: |
שורה 14: |
| | | |
| ==ניסוח החוק השני של שניידר וקיי== | | ==ניסוח החוק השני של שניידר וקיי== |
− | הניסוח המסורתי של החוק השני של התרמודינמיקה עוסק במערכות סגורות המתקרבות לשיווי משקל תרמודינמי. ניסוח זה אומר מעט מידי על התנהגותן של מערכות תרמודינמיות פתוחות, אשר אנרגיה זורמת לתוכן ללא הרף ממקור חיצוני והן נמצאות במצב יציב רחוק משיווי משקל תרמו דינמי. היו מספר נסיונות לנסח מחדש את החוק החל משנות ה-70 כך שהוא יהיה תלוי פחות בהגדרות של אנטרופיה ובמצבים סטטיים ויעסוק בתהליכים תרמודינמיים רחבים יותר. | + | הניסוח המסורתי של החוק השני של התרמודינמיקה עוסק במערכות סגורות המתקרבות לשיווי משקל תרמודינמי. ניסוח זה אומר מעט מידי על התנהגותן של מערכות תרמודינמיות פתוחות, אשר אנרגיה זורמת לתוכן ללא הרף ממקור חיצוני והן נמצאות במצב יציב רחוק משיווי משקל תרמו דינמי. החל משנות ה-70 היו מספר נסיונות לנסח מחדש את החוק כך שהוא יהיה תלוי פחות בהגדרות של אנטרופיה ובמצבים סטטיים ויעסוק בתהליכים תרמודינמיים רחבים יותר. |
| | | |
| ב-1994 הציעו אריק שניידר וג'יימס קיי (בעקבות Kestin) ניסוח מחודש של החוק שמתאים לתהליכים תרמודינמיים שרחוקים משיווי משקל.<ref name="Schneider_Kay_1994"/> | | ב-1994 הציעו אריק שניידר וג'יימס קיי (בעקבות Kestin) ניסוח מחודש של החוק שמתאים לתהליכים תרמודינמיים שרחוקים משיווי משקל.<ref name="Schneider_Kay_1994"/> |
שורה 24: |
שורה 24: |
| הם מדגימים את ההגדרה שלהם באמצעות תא ברנארד Bénard cell - כאשר מגדילים את הפרשי הטמפרטורה בין מאגר חם למאגר קר הנוזל באמצע מפתח "תאי זרימה", ותאים אלה (שהם מבנים מסודרים יותר) מגדילים את הקצב הבזבוז או הפיזור של האנרגיה וכן את קצב ההרס של ה[[אקסרגיה]]. כמו כן התאים עצמם הם אזורים איזותרמיים כלומר בתוכם יש טמפרטורה אחידה, מפל הטמפרטורות מתקיים רק בשכבות הגבול שהופכות יותר ויותר דקות. אם רוצים להגדיל את הפרשי הטמפרטורה בין המאגר החם והקר יש צורך להשקיע יותר ויותר עבודה כדי לבצע דבר זה (היות ומערכת הופכת יעילה יותר בהשוואת הטמפרטורות בינהם). הם מראים כי קצב הבזבוז של החום, קצב ייצור האנטרופיה במערכת וקצב ההרס של ה[[אקסרגיה]] גדלים כולם ככל שעוצמת הגרדינאט עולה, והם עולים בקצב הולך ומתחזק ככל שהגרדיאנט גדל. הופעת המבנה המסודר (תאי ברנארד) החל מגרדינאט מסויים, מגדילה את קצב הבזבוז של חום והאקסרגיה בכל גרדינאט נתון, וזאת בהשווה לקצב הפיזור ללא נוכחות של תאי ברנארד. | | הם מדגימים את ההגדרה שלהם באמצעות תא ברנארד Bénard cell - כאשר מגדילים את הפרשי הטמפרטורה בין מאגר חם למאגר קר הנוזל באמצע מפתח "תאי זרימה", ותאים אלה (שהם מבנים מסודרים יותר) מגדילים את הקצב הבזבוז או הפיזור של האנרגיה וכן את קצב ההרס של ה[[אקסרגיה]]. כמו כן התאים עצמם הם אזורים איזותרמיים כלומר בתוכם יש טמפרטורה אחידה, מפל הטמפרטורות מתקיים רק בשכבות הגבול שהופכות יותר ויותר דקות. אם רוצים להגדיל את הפרשי הטמפרטורה בין המאגר החם והקר יש צורך להשקיע יותר ויותר עבודה כדי לבצע דבר זה (היות ומערכת הופכת יעילה יותר בהשוואת הטמפרטורות בינהם). הם מראים כי קצב הבזבוז של החום, קצב ייצור האנטרופיה במערכת וקצב ההרס של ה[[אקסרגיה]] גדלים כולם ככל שעוצמת הגרדינאט עולה, והם עולים בקצב הולך ומתחזק ככל שהגרדיאנט גדל. הופעת המבנה המסודר (תאי ברנארד) החל מגרדינאט מסויים, מגדילה את קצב הבזבוז של חום והאקסרגיה בכל גרדינאט נתון, וזאת בהשווה לקצב הפיזור ללא נוכחות של תאי ברנארד. |
| | | |
− | להגדרה זו יתרון נוסף והוא שאין צורך להשתמש בה במשתני מצב כמו אנטרופיה שמוגדרים רק למצבים של שיווי משקל. | + | להגדרה זו יתרון נוסף והוא שאין צורך להשתמש בה במשתני מצב כמו אנטרופיה המוגדרים רק למצבים של שיווי משקל. |
| | | |
| שניידר וקיי מדגימים את ההגדרה שלהם על פני מערכות נוסופות כמו מערכות זרימת נוזלים עקב גרביטציה ומערכות כימיות. הם גם מאזכרים מאמר של Paltridge (1979) שטוען כי במערכת האמטוספרית, מערכת האקלים מכוונת את עצמה למצב שיגרום למקסימום פיזור של אקסרגיה וכי הפיזור העולמי של עננים, טמפרטורה וזרמי אנרגיה אנכיים נשלטים על ידי תהליכי פיזור אנרגיה דומים לתאוריה שלהם. | | שניידר וקיי מדגימים את ההגדרה שלהם על פני מערכות נוסופות כמו מערכות זרימת נוזלים עקב גרביטציה ומערכות כימיות. הם גם מאזכרים מאמר של Paltridge (1979) שטוען כי במערכת האמטוספרית, מערכת האקלים מכוונת את עצמה למצב שיגרום למקסימום פיזור של אקסרגיה וכי הפיזור העולמי של עננים, טמפרטורה וזרמי אנרגיה אנכיים נשלטים על ידי תהליכי פיזור אנרגיה דומים לתאוריה שלהם. |