שינויים

קפיצה לניווט קפיצה לחיפוש
נוספו 69 בתים ,  21:46, 21 במרץ 2016
עריכה
שורה 1: שורה 1:  
{{מושג בסיסי}}
 
{{מושג בסיסי}}
 
[[תמונה:Npp.PNG|left|thumb|350px|הערכה של כמות הייצור הראשוני נטו - NPP - מסת הפחמן שנוצרת בכל שנה בצמחים לאחר שמנקים מהייצור הראשוני ברוטו את הפחמן שאובד בתהליכי נשימה של הצמח.  חלק גדול מהייצור הראשוני מבוצע ב[[יער טרופי|יערות טרופיים]] באיזורי קו המשווה . הייצור הראשוני הימי הוא קטן ומתרכז בעיקר במדפי היבשת וסמוך לקטבים]]
 
[[תמונה:Npp.PNG|left|thumb|350px|הערכה של כמות הייצור הראשוני נטו - NPP - מסת הפחמן שנוצרת בכל שנה בצמחים לאחר שמנקים מהייצור הראשוני ברוטו את הפחמן שאובד בתהליכי נשימה של הצמח.  חלק גדול מהייצור הראשוני מבוצע ב[[יער טרופי|יערות טרופיים]] באיזורי קו המשווה . הייצור הראשוני הימי הוא קטן ומתרכז בעיקר במדפי היבשת וסמוך לקטבים]]
'''ייצור ראשוני''' (Primary production) הוא הייצור של תרכובות אורגניות מתוך [[פחמן דו-חמצני]] אן-אורגני שמקורו באטמוספירה או בים, בעיקר על ידי [[תהליך]] הקיבוע של הפוטוסינתזה (ניצול [[אור שמש]] על ידי צמחים), כאשר כימוסינתזה היא תהליך מצומצם בהרבה. כל החיים בכדור הארץ נסמכים באופן ישיר או עקיף על הייצור הראשוני. היצורים האחריים לייצור ראשוני נקראים '''יצרנים ראשוניים''' או '''אוטוטרופים''' והם הבסיס של [[מארג המזון]]. באזורים אקולוגיים יבשתיים, אלו הם בעיקר צמחים, ואילו ב[[מערכת אקולוגית|מערכות אקולוגיות]] ימיות האצות הן היצרנים הראשוניים העיקריים.  
+
'''ייצור ראשוני''' (Primary production) הוא הייצור של תרכובות אורגניות מתוך [[פחמן דו-חמצני]] אן-אורגני שמקורו באטמוספירה או בים, בעיקר על ידי [[תהליך]] הקיבוע של הפוטוסינתזה (ניצול [[אור שמש]] על ידי צמחים), כאשר כימוסינתזה היא תהליך מצומצם בהרבה. כל החיים בכדור הארץ נסמכים באופן ישיר או עקיף על הייצור הראשוני. היצורים האחראים לייצור הראשוני נקראים '''יצרנים ראשוניים''' או '''אוטוטרופים''' והם הבסיס של [[מארג המזון]]. באזורים אקולוגיים יבשתיים, אלו הם בעיקר צמחים, ואילו ב[[מערכת אקולוגית|מערכות אקולוגיות]] ימיות האצות הן היצרנים הראשוניים העיקריים.
   −
מבחינים בין '''ייצור ראשוני גולמי''' ('''GPP''') היא הכמות הכוללת של פחמן דו חמצני שמקובעת על ידי הפוטוסינתזה (או  כימוסינתזה)לבין '''יצור ראשני נטו''' ('''NPP''') כמות הפחמן הדו חמצני שקובעה לאחר קיזוז הפסדי פחמן עקב תהליכים כמו נשימה של הצמח (הגורמת לפליטה של פחמן דו חמצני חזרה לסביבה הלא אורגנית).  
+
מבחינים בין '''ייצור ראשוני גולמי''' ('''GPP''') - שהוא הכמות הכוללת של פחמן דו חמצני שמקובעת על ידי הפוטוסינתזה (או  כימוסינתזה), לבין '''יצור ראשוני נטו''' ('''NPP''') - שהוא כמות הפחמן הדו חמצני שקובעה לאחר קיזוז הפסדי פחמן עקב תהליכים כמו נשימה של הצמח (הגורמת לפליטה של פחמן דו חמצני חזרה לסביבה הלא אורגנית).
    
==תאור כימי==
 
==תאור כימי==
[[תמונה:Calvin-cycle4.png|left|thumb|250px|קיבוע פחמן ותגובות כימיות נוספות במסגרת [[מחזור ביוגאוכימי|המחזורים האקולוגיים]] השותפים לייצור ראשוני ומחזור האנרגיה ביצורים חיים ]]
+
[[תמונה:Calvin-cycle4.png|left|thumb|250px|קיבוע פחמן ותגובות כימיות נוספות במסגרת [[מחזור ביוגאוכימי|המחזורים האקולוגיים]] השותפים לייצור ראשוני ומחזור האנרגיה ביצורים חיים]]
ברמה הפיזיקלית, כמעט כל הייצור ראשוני הוא ההמרה של [[אנרגיה]] מהצורה של קרינה אלקטרומגנטית לצורה אגורה של אנרגיה כימית, שמתבצעת על ידי יצורים חיים. המקור העיקרי לאנרגיה זו היא [[אנרגיית שמש]]. חלק זעיר מהייצור הראשוני נובע מחיידקים שמנצלים אנרגיה כימית שאצורה במולקולות כימיות אנ-אורגניות.  
+
ברמה הפיזיקלית, כמעט כל הייצור הראשוני הוא המרה של [[אנרגיה]] מהצורה של קרינה אלקטרומגנטית לצורה אגורה של אנרגיה כימית, שמתבצעת על ידי יצורים חיים. המקור העיקרי לאנרגיה זו הוא [[אנרגיית שמש|אנרגיית השמש]]. חלק זעיר מהייצור הראשוני נובע מחיידקים שמנצלים אנרגיה כימית שאצורה במולקולות כימיות אנ-אורגניות.
   −
ללא קשר למקור שלה, אנרגיה זו משמשת כדי לסנתז מולקולות אורגניות מורכבות, ממולקולות אן-אורגניות פשוטות יותר כמו [[פחמן דו חמצני]] (CO<sub>2</sub>) ומים (H<sub>2</sub>O). שתי המשוואות הבאות הם ייצוג מופשט של פוטוסינתזה (משוואה ראשונה) ושל כימוסינתזה (משוואה שניה):
+
ללא קשר למקור שלה, אנרגיה זו משמשת כדי לסנתז מולקולות אורגניות מורכבות, ממולקולות אן-אורגניות פשוטות יותר כמו [[פחמן דו חמצני]] (CO<sub>2</sub>) ומים (H<sub>2</sub>O). שתי המשוואות הבאות הן ייצוג מופשט של פוטוסינתזה (משוואה ראשונה) ושל כימוסינתזה (משוואה שניה):
 
::: CO<sub>2</sub> + H<sub>2</sub>O + ''light'' -> CH<sub>2</sub>O + O<sub>2</sub> <br>
 
::: CO<sub>2</sub> + H<sub>2</sub>O + ''light'' -> CH<sub>2</sub>O + O<sub>2</sub> <br>
 
::: CO<sub>2</sub> + O<sub>2</sub> + 4 H<sub>2</sub>S -> CH<sub>2</sub>O + 4 S + 3 H<sub>2</sub>O
 
::: CO<sub>2</sub> + O<sub>2</sub> + 4 H<sub>2</sub>S -> CH<sub>2</sub>O + 4 S + 3 H<sub>2</sub>O
   −
בשני המקרים, התוצר הסופי הוא פחמימה (CH2O) בדרך כלל גלוקוז או סוכרוז אחר. מולקולות פשוטות יחסית אלה יכולות לשמש בסינתזות כימיות אחרות לייצור מולקולות מורכבות יותר המשמשות את כל היצורים החיים -  כמו חלבונים, פחמימות מורכבות, חומצות שומן או חומצות גרעין. הן יכולות לשמש גם כמקור אנרגיה לתאים כחלק מתהליך הנשימה של תאים. צריכה של ייצרנים ראשוניים על ידי אוכלי צמחים משנעת את המולקולות האורגניות האלה (והאנרגיה האצורה בהן) במעלה מארג המזון ובכך מאפשרים הזנה וקיום של כל היצורים החיים בכדור הארץ.
+
בשני המקרים, התוצר הסופי הוא פחמימה (CH2O), בדרך כלל גלוקוז או סוכרוז אחר. מולקולות פשוטות יחסית אלה יכולות לשמש בסינתזות כימיות אחרות לייצור מולקולות מורכבות יותר המשמשות את כל היצורים החיים -  כמו חלבונים, פחמימות מורכבות, חומצות שומן או חומצות גרעין. הן יכולות לשמש גם כמקור אנרגיה לתאים כחלק מתהליך הנשימה של תאים. צריכה של יצרנים ראשוניים על ידי אוכלי צמחים משנעת את המולקולות האורגניות האלו (והאנרגיה האצורה בהן) במעלה מארג המזון ובכך מאפשרת הזנה וקיום של כל היצורים החיים בכדור הארץ.
    
==מגבלות על הייצור הראשוני==
 
==מגבלות על הייצור הראשוני==
רק כחלק זעיר, פחות מפרומיל, מסך אנרגיית השמש המגיעה לכדור הארץ, מתרגם לאנרגיה זמינה ליצורים החיים. דבר זה נובע משתי סיבות עיקריות.  
+
רק חלק זעיר, פחות מפרומיל, מסך אנרגיית השמש המגיעה לכדור הארץ, מתורגם לאנרגיה זמינה ליצורים החיים. דבר זה נובע משתי סיבות עיקריות.
    
הסיבה האחת היא [[החוק השני של התרמודינמיקה]], לפיו התמרה של אנרגיה אינה יכולה להתבצע ביעילות תרמודינמית של 100%. חלק מהאנרגיה חייב להתבזבז לסביבה כחום.  
 
הסיבה האחת היא [[החוק השני של התרמודינמיקה]], לפיו התמרה של אנרגיה אינה יכולה להתבצע ביעילות תרמודינמית של 100%. חלק מהאנרגיה חייב להתבזבז לסביבה כחום.  
   −
הסיבה השניה והמשמעותית יותר, קשורה למגבלות שונות שיש על התשומות הנדרשות לתהליך ההטמעה - כמות ואיכות הקרינה שמגיעה אל הצמחים, כמות המים, כמות חומרי ההזנה שיש להם, ועוד. הטמפרטורה של הסביבה משפיעה על הקצב בו ניתן לבצע הטמעה ואקלים יכול להשפיע בצורות אחרות - לדוגמה שלג מגביל את גודל העלים באיזורים קרים.  
+
הסיבה השנייה והמשמעותית יותר, קשורה למגבלות שונות שיש על התשומות הנדרשות לתהליך ההטמעה - כמות ואיכות הקרינה שמגיעה אל הצמחים, כמות המים, כמות חומרי ההזנה שיש להם, ועוד. הטמפרטורה של הסביבה משפיעה על הקצב בו ניתן לבצע הטמעה ואקלים יכול להשפיע בצורות אחרות - לדוגמה שלג מגביל את גודל העלים באיזורים קרים.
    
===כמות וסוג הקרינה===
 
===כמות וסוג הקרינה===
 
{{הפניה לערך מורחב|ערכים =[[אנרגיית שמש]],[[אפקט החממה]]}}
 
{{הפניה לערך מורחב|ערכים =[[אנרגיית שמש]],[[אפקט החממה]]}}
כמות האנרגיה הסולארית שמגיעה לכדור הארץ מהשמש בשנה עומדת על 5.5×10<sup>24</sup> ג'ול. אנרגיה זו אינה מתחלקת בצורה שווה והיא חזקה בהרבה באיזור קו-המשווה. בצורה ממוצעת כל מטר רבוע מקבל בשנה  1.05×10<sup>10</sup> קלוריות. מתוך זה חלק מה[[אקסרגיה]] אובדת באטמוספירה על ידי בליעה והחזרה.<ref name="globalchange"/>  
+
כמות האנרגיה הסולארית שמגיעה לכדור הארץ מהשמש בשנה עומדת על 5.5×10<sup>24</sup> ג'ול. אנרגיה זו אינה מתחלקת בצורה שווה והיא חזקה בהרבה באיזור קו-המשווה. בממוצע כל מטר רבוע מקבל בשנה  1.05×10<sup>10</sup> קלוריות. מתוך זה חלק מה[[אקסרגיה]] אובדת באטמוספירה על ידי בליעה והחזרה.<ref name="globalchange"/>
   −
'''הייצור הראשוני הגולמי''' העולמי הממוצע עומד על 5.83×10<sup>06</sup> קלוריות למטר רבוע בשנה שהן רק 0.06% מכמות האנרגיה שהתקבלה למטר רבוע. לאחר הורדת עלויות אנרגטיות של נשימה, '''הייצור הראשוני נטו''' הוא כ-4.95×10<sup>06</sup> קלוריות למטר רבוע בשנה או כ-0.05% מתוך זרם האנרגיה המגיע לכדור הארץ. זו [[יעילות תרמודינמית]] הממוצעת של הייצור הראשוני.<ref name="globalchange"/> בצמחי יבשה היעילות יכולה להגיע ליעילות גבוה יותר ולעמוד על כ- 2-3%, ובאצות ימיות היא יכולה להגיע עד ליעילות של כ-1%. <ref  
+
'''הייצור הראשוני הגולמי''' העולמי הממוצע עומד על 5.83×10<sup>06</sup> קלוריות למטר רבוע בשנה שהן רק 0.06% מכמות האנרגיה שהתקבלה למטר רבוע. לאחר הורדת עלויות אנרגטיות של נשימה, '''הייצור הראשוני נטו''' הוא כ-4.95×10<sup>06</sup> קלוריות למטר רבוע בשנה או כ-0.05% מתוך זרם האנרגיה המגיע לכדור הארץ. זו [[יעילות תרמודינמית|היעילות התרמודינמית]] הממוצעת של הייצור הראשוני.<ref name="globalchange"/> בצמחי יבשה היעילות יכולה להגיע ליעילות גבוהה יותר ולעמוד על כ-2%-3%, ובאצות ימיות היא יכולה להגיע עד ליעילות של כ-1%. <ref  
   −
צמחים אינם יכולים להשתמש בכל אנרגיית האור שזמינה להם. מתוך סך קרינת האור שמגיעה לפני השטח של כדור הארץ, כ-10% היא קרינה אולטרה סגולה, וכ-45% היא קרינת אור נראה ואור אינפרה-אדום. צמחים ואצות יכולים לנצל רק חלק מאורכי הגל והם מנצלים בעיקר אור-נראה בגוונים אדום וכחול (זו הסיבה שהם נראים לנו ירוקים - עקב החזרת אור בצבע ירוק), וכן ספקטרום מתחום האינפרה אדום הרחוק, והם מחזירים גם אור בתחום האינפרה אדום הקרוב. <ref name="globalchange"> [[http://www.globalchange.umich.edu/globalchange1/current/lectures/kling/energyflow/energyflow.html The Flow of Energy: Primary Production to Higher Trophic Levels]]</ref>
+
צמחים אינם יכולים להשתמש בכל אנרגיית האור שזמינה להם. מתוך סך קרינת האור שמגיעה לפני השטח של כדור הארץ, כ-10% היא קרינה אולטרה סגולה, וכ-45% היא קרינת אור נראה ואור אינפרא-אדום. צמחים ואצות יכולים לנצל רק חלק מאורכי הגל והם מנצלים בעיקר אור-נראה בגוונים אדום וכחול (זו הסיבה שהם נראים לנו ירוקים - עקב החזרת אור בצבע ירוק), וכן ספקטרום מתחום האינפרא אדום הרחוק, והם מחזירים גם אור בתחום האינפרא אדום הקרוב. <ref name="globalchange"> [[http://www.globalchange.umich.edu/globalchange1/current/lectures/kling/energyflow/energyflow.html The Flow of Energy: Primary Production to Higher Trophic Levels]]</ref>
 +
 
 +
יעילות זו, כפול שטח המחיה של אצות וצמחייה, יחד עם משך זמן הפעילות של פוטוסינתזה (כמות שעות האור ביום), קובעים את כמות האנרגיה הכימית הזמינה תאורטית לכלל היצורים החיים, אך יש מגבלות נוספות המקטינות את צריכת האנרגיה, שכן צמחים דורשים תנאים נוספים כדי לגדול - לא רק אור שמש.
   −
יעילות זו, כפול שטח המחיה של אצות וצמחייה, יחד עם משך זמן הפעילות של פוטוסינתזה (כמה שעות אור יש), קובעות את כמות האנרגיה הכימית הזמינה תאורטית לכלל היצורים החיים, אך יש מגבלות נוספות המקטינות את צריכת האנרגיה, שכן צמחים דורשים תנאים נוספים כדי לגדול - לא רק אור שמש.
   
===מגבלות ביבשה===
 
===מגבלות ביבשה===
ללא [[מים]] צמחים אינם מסוגלים לבצע הטמאה גם אם יש להם כמות גבוהה של קרינת שמש. לכן אחד הגורמים המגבילים העיקריים ביבשה הוא כמות המים ולאו דווקא כמות הקרינה באותו מקום. כך שאיזור מדברי ייצר כמות מועטה של ייצור ראשוני גם אם יש בו כמות גבוהה של קרינת שמש.  
+
ללא [[מים]] צמחים אינם מסוגלים לבצע הטמעה גם אם יש להם כמות גבוהה של קרינת שמש. לכן אחד הגורמים המגבילים העיקריים ביבשה הוא כמות המים ולאו דווקא כמות הקרינה באותו מקום. כך שאיזור מדברי ייצר כמות מועטה של ייצור ראשוני גם אם יש בו כמות גבוהה של קרינת שמש.  
   −
פוטוסינתזה רבה יותר מבוצעת באיזורים יבשתיים טרופיים בהם יש שפע של מים ושמש (והמגבלה האפקטיבית נובעת מחומרי הזנה). לעומת זאת באיזורים יבשתים אחרים המגבלות על פוטוסינתזה נובעות ממחסור במים (איזורים יבשים, מדבריות), קור או מקשיים אחרים (יערות מחטניים באיזורים קרים). לפרוט על מגבלות אלה ראו בערך [[אקולוגיה]].
+
פוטוסינתזה רבה יותר מבוצעת באיזורים יבשתיים טרופיים בהם יש שפע של מים ושמש (והמגבלה האפקטיבית נובעת מחומרי הזנה). לעומת זאת באיזורים יבשתים אחרים המגבלות על פוטוסינתזה נובעות ממחסור במים (איזורים יבשים, מדבריות), קור, או מקשיים אחרים (יערות מחטניים באיזורים קרים). לפרוט של מגבלות אלה ראו בערך [[אקולוגיה]].
    
===מגבלות בים===
 
===מגבלות בים===
 
חומרי ההזנה בים הם מועטים והם שוקעים לקרקעית, לעומק בו אור השמש אינו מגיע. כך שזמינות של מינרלים כמו [[מחזור הזרחן|זרחן]] ו[[מחזור החנקן|חנקן]] הם [[גורם מגביל|הגורמים המגבילים]] העיקריים בים.  
 
חומרי ההזנה בים הם מועטים והם שוקעים לקרקעית, לעומק בו אור השמש אינו מגיע. כך שזמינות של מינרלים כמו [[מחזור הזרחן|זרחן]] ו[[מחזור החנקן|חנקן]] הם [[גורם מגביל|הגורמים המגבילים]] העיקריים בים.  
   −
מסיבה זו עיקר הייצור הראשוני בים מתרחש במקומות בהם יש "משאבת מים" - מים עמוקים ועשירים בחומרי הזנה עולים לפני השטח ומאפשרים קיבוע פחמן. תנאים אלה מתרחשים ליד היבשה (מדפי יבשה)וכן בקטבים.  
+
מסיבה זו עיקר הייצור הראשוני בים מתרחש במקומות בהם יש "משאבת מים" - מים עמוקים ועשירים בחומרי הזנה עולים לפני השטח ומאפשרים קיבוע פחמן. תנאים אלה מתרחשים ליד היבשה (מדפי יבשה) וכן בקטבים.
    
==ייצור ראשוני במערכות אקולוגיות שונות==
 
==ייצור ראשוני במערכות אקולוגיות שונות==
שורה 45: שורה 46:  
{{תבנית:בעיות סביבתיות}}
 
{{תבנית:בעיות סביבתיות}}
 
מערכות אקולוגיות שונות הן בעלות תרומה שונה מאד לייצור הראשוני. אפשר לבחון את כמות הייצור הראשוני במערכות אקולוגיות שונות כדי להבין את ההבדלים בינן:
 
מערכות אקולוגיות שונות הן בעלות תרומה שונה מאד לייצור הראשוני. אפשר לבחון את כמות הייצור הראשוני במערכות אקולוגיות שונות כדי להבין את ההבדלים בינן:
 
+
* יער משווני או ביצה משוונית - כ-7,000 ק"ג פחמן לדונם לשנה, זהו שיעור הייצור הראשוני הגבוה ביותר.
* יער משווני או ביצה משוונית- כ-7,000 ק"ג פחמן לדונם לשנה, זהו שיעור הייצור הראשוני הגבוה ביותר.  
   
* איזורי יער צפוני מייצרים 2,000-3000 ק"ג לדונם לשנה.
 
* איזורי יער צפוני מייצרים 2,000-3000 ק"ג לדונם לשנה.
* איזור מדברי - כ 100-50 ק"ג לדונם בשנה.  
+
* איזור מדברי - כ 100-50 ק"ג לדונם בשנה.
* [[תירס]] לדוגמה מגיע עד לכ-2,000 ק"ג לדוגם בשנה - גידולי חקלאות מייצרים רק בחלק מעונות השנה, ולכן התרומה שלהם קטנה יותר יחסית לצמחים אחרים.
+
* [[תירס]] לדוגמה מגיע עד לכ-2,000 ק"ג לדוגם בשנה - גידולי חקלאות מיוצרים רק בחלק מעונות השנה, ולכן התרומה שלהם קטנה יותר יחסית לצמחים אחרים.
*באוקיינוסים באיזורי ערבול מים - בין 1000 ל-2000 ק"ג לדונם לשנה. באיזורים אלה (ליד הקטבים ובמדפי יבשת), יש הרבה יותר ייצור ראשוני ולכן פעילות גבוהה יותר של יצורים חיים.  
+
* באוקיינוסים באיזורי ערבול מים - בין 1000 ל-2000 ק"ג לדונם לשנה. באיזורים אלה (ליד הקטבים ובמדפי יבשת), יש הרבה יותר ייצור ראשוני ולכן פעילות גבוהה יותר של יצורים חיים.
* אוקיינוס פתוח מייצר בין 50 ל-200 ק"ג לדונם בשנה.  
+
* אוקיינוס פתוח מייצר בין 50 ל-200 ק"ג לדונם בשנה.
   −
דברים אלה מצביעים על חשיבות היערות המשוונים - למרות שהאוקיינוס הפתוח תופס כ-70% משטח הפלנטה הוא מייצר פחות מ-20% מהייצור הראשוני. לעומתו היער המשווני שתופס רק 5% משטח כדור הארץ תורם 25-30% מכלל הייצור הראשוני. <ref>'''מבוא לאקולוגיה, חיים בסביבתם''', דן כהן, אוניברסיטה משודרת, 1993 , משרד הבטחון- ההוצאה לאור</ref>
+
דברים אלה מצביעים על חשיבות היערות המשוונים - למרות שהאוקיינוס הפתוח תופס כ-70% משטח הפלנטה הוא מייצר פחות מ-20% מהייצור הראשוני. לעומתו היער המשווני שתופס רק 5% משטח כדור הארץ תורם 25%-30% מכלל הייצור הראשוני. <ref>'''מבוא לאקולוגיה, חיים בסביבתם''', דן כהן, אוניברסיטה משודרת, 1993, משרד הבטחון - ההוצאה לאור</ref>
    
==רמות טרופיות==
 
==רמות טרופיות==
כל יצור חי, ולמעשה כל [[מערכת מפזרת]], זקוק לזרם מתמיד של [[אקסרגיה]] - של [[אנרגיה]] בעלת [[אנטרופיה]] נמוכה, כדי להיות מסוגל להתקיים. רוב ה[[אקסרגיה]] שמפרנסת את המערכת האקולוגית מקורה ב[[אנרגיית השמש]] ובייצור הראשוני. צמחים ועצות מסוגלים לספק אנרגיה זו ומספקים אנרגיה כימית שזמינה לכלל היצורים החיים.  
+
כל יצור חי, ולמעשה כל [[מערכת מפזרת]], זקוק לזרם מתמיד של [[אקסרגיה]] - של [[אנרגיה]] בעלת [[אנטרופיה]] נמוכה, כדי להיות מסוגל להתקיים. רוב ה[[אקסרגיה]] שמפרנסת את המערכת האקולוגית מקורה ב[[אנרגיית השמש]] ובייצור הראשוני. צמחים ואצות מסוגלים לספק אנרגיה זו ומספקים אנרגיה כימית שזמינה לכלל היצורים החיים.
   −
שאר היצורים החיים יכולים לקבל רק שאריות של האנרגיה שנקלטה על ידי הצמחים. אוכלי צמחים מתחלקים לאוכלי עשב וכן ליצורים זעירים שמעכלים את הצמח לאחר מותו ומסייעים להתפרקותו ולהשלמת מחזורי המינרלים שהיו בצמח. יצורים נוספים, כמו טורפים או טפילים ניזונים מאוכלי הצמחים וכך הלאה. כל שלב כזה נקרא "'''רמה טרופית'''".  
+
שאר היצורים החיים יכולים לקבל רק שאריות של האנרגיה שנקלטה על ידי הצמחים. אוכלי צמחים מתחלקים לאוכלי עשב וכן ליצורים זעירים שמעכלים את הצמח לאחר מותו ומסייעים להתפרקותו ולהשלמת מחזורי המינרלים שהיו בצמח. יצורים נוספים, כמו טורפים או טפילים ניזונים מאוכלי הצמחים וכך הלאה. כל שלב כזה נקרא "'''רמה טרופית'''".
   −
בגלל [[החוק השני של התרמודינמיקה]], בכל רמה טרופית יש לכלל היצורים פחות [[אקסרגיה]] מכמות האקסרגיה שהיתה זמינה ליצורים לפניהם, וחלק מהכמות המקורית מתפזר כחום - [[אנרגיה]] בעלת [[אנטרופיה]] גבוהה יותר שהיצורים החיים ומנועי חום-אינם מסוגלים לנצל. מסיבה זו בכל רמה טרופית, יש תוספת קטנה יותר של מסת גוף בשנה (כמות היצורים ברמה הטרופית כפול כמות הגידול במסה בשנה ליצור פחות כמות האובדן). כמו כן זוה הסיבה שנדיר למצוא יותר מ-4-5 רמות טרופיות במערכת אקולוגית.
+
בגלל [[החוק השני של התרמודינמיקה]], בכל רמה טרופית יש לכלל היצורים פחות [[אקסרגיה]] מכמות האקסרגיה שהיתה זמינה ליצורים לפניהם, וחלק מהכמות המקורית מתפזר כחום - [[אנרגיה]] בעלת [[אנטרופיה]] גבוהה יותר שהיצורים החיים ומנועי חום-אינם מסוגלים לנצל. מסיבה זו בכל רמה טרופית, יש תוספת קטנה יותר של מסת גוף בשנה (כמות היצורים ברמה הטרופית כפול כמות הגידול במסה בשנה ליצור פחות כמות האובדן). כמו כן זוהי הסיבה שנדיר למצוא יותר מ-4-5 רמות טרופיות במערכת אקולוגית.
    
==השפעה ושימוש על ידי בני האדם==
 
==השפעה ושימוש על ידי בני האדם==
 
{{תבנית:מדדי קיימות}}
 
{{תבנית:מדדי קיימות}}
בני אדם, כמו כל יצור חי אחר, נדרשים לייצור הראשוני לשם המזון שלהם מצד שני, [[שימושי קרקע]] כמו [[בירוא יערות]] ופעילות אנושית שונות כמו [[חקלאות]] או [[ערים]] הן בעלות השפעות שונות על '''הייצור הראשוני נטו בפועל''' (NPP<sub>act</sub>). בכמה אזורים, כמו בעמק הנילוס' [[השקייה]] וטיפוח החקלאות הובילה להגדלה ניכרת של הייצור הראשוני, אך דבר זה הינו היוצא מהכלל. לרוב פעילות האדם גורמת להפחתה בגודל הייצור הראשוני. '''הקיטון ב-NPP עקב שינויי קרקע''' (ΔNPP<sub>LC</sub>) הוא של 9.6% בהתייחס ל[[שימושי קרקע|שטח הקרקעי העולמי]].  
+
בני אדם, כמו כל יצור חי אחר, נדרשים לייצור הראשוני לשם המזון שלהם. מצד שני, [[שימושי קרקע]] כמו [[בירוא יערות]] ופעילויות אנושיות שונות כמו [[חקלאות]] או [[ערים]] הן בעלות השפעות שונות על '''הייצור הראשוני נטו בפועל''' (NPP<sub>act</sub>). בכמה אזורים, כמו בעמק הנילוס, [[השקייה]] וטיפוח החקלאות הובילה להגדלה ניכרת של הייצור הראשוני, אך דבר זה הינו היוצא מהכלל. לרוב, פעילות האדם גורמת להפחתה בגודל הייצור הראשוני. '''הקיטון ב-NPP עקב שינויי קרקע''' (ΔNPP<sub>LC</sub>) הוא של 9.6% בהתייחס ל[[שימושי קרקע|שטח הקרקעי העולמי]].
    
===שימוש בידי בני אדם===
 
===שימוש בידי בני אדם===
הצריכה הסופית של בני האדם מתוך סך הייצור הראשוני נקראת '''[[ניכוס אנושי של ייצור ראשוני נטו|הלקיחה האנושית מהייצור הראשוני נטו]]''' (HANPP''' - Human Appropriation of Net Primary Productivity'''). ניתן לחלק צריכה זו לפי ענפים: צריכה של [[מוצרי עץ]] לדלק, בניין וריהוט; עץ וסיבים ל[[נייר]]; [[חקלאות]] לסיבים (להפקת בדים) וגידול צמחים וחיות למזון - [[צמחונות|תזונה צמחונית]], בשר, חלב, וביצים.  
+
הצריכה הסופית של בני האדם מתוך סך הייצור הראשוני נקראת '''[[ניכוס אנושי של ייצור ראשוני נטו|הלקיחה האנושית מהייצור הראשוני נטו]]''' (HANPP''' - Human Appropriation of Net Primary Productivity'''). ניתן לחלק צריכה זו לפי ענפים: צריכה של [[מוצרי עץ]] לדלק, בניין וריהוט; עץ וסיבים ל[[נייר]]; [[חקלאות]] לסיבים (להפקת בדים) וגידול צמחים וחיות למזון - [[צמחונות|תזונה צמחונית]], בשר, חלב, וביצים.
   −
ביוני 2004 פרסם מגזין נייצ'ר גליון מיוחד בנושא הייצור הראשוני שכלל הערכה של הייצור הראשוני והצריכה האנושית שלו. המחקר בוצע על ידי חוקרים מנאס"א, אוניברסיטת מרילנד, WWF, ואוניברסיטת סטנפורד. ממצאי הדו"ח מוצגים בצורת מפות ונגישים לציבור[http://sedac.ciesin.columbia.edu/es/hanpp.html]. על פי הדו"ח, צריכת האנושות כולה עמדה על 11.45 מיליארד טונות של פחמן בשנה. צריכה זו עומדת על כ-3.72 טונות לאדם ממוצע במדינות המפותחות, שסה"כ צורכות יחד 3.4 מיליארד טונות פחמן, ו-1.27 טונות לאדם ממוצע במדינות  העניות יותר, שצורכות יחד 8 מיליארד טונות פחמן. אילו כל בני האדם היו צורכים כמו האוכלוסייה המערבית, באוכלוסייה בגודל של 1995, סה"כ הצריכה היתה עומדת על 18 מיליארד טונות פחמן בשנה.  
+
ביוני 2004 פרסם מגזין נייצ'ר גליון מיוחד בנושא הייצור הראשוני שכלל הערכה של הייצור הראשוני והצריכה האנושית שלו. המחקר בוצע על ידי חוקרים מנאס"א, אוניברסיטת מרילנד, WWF, ואוניברסיטת סטנפורד. ממצאי הדו"ח מוצגים בצורת מפות ונגישים לציבור [http://sedac.ciesin.columbia.edu/es/hanpp.html]. על פי הדו"ח, צריכת האנושות כולה עמדה על 11.45 מיליארד טונות של פחמן בשנה. צריכה זו עומדת על כ-3.72 טונות לאדם ממוצע במדינות המפותחות, שסה"כ צורכות יחד 3.4 מיליארד טונות פחמן, ו-1.27 טונות לאדם ממוצע במדינות  העניות יותר, שצורכות יחד 8 מיליארד טונות פחמן. אילו כל בני האדם היו צורכים כמו האוכלוסייה המערבית, באוכלוסייה בגודל של 1995, סה"כ הצריכה היתה עומדת על 18 מיליארד טונות פחמן בשנה.
   −
סך הצריכה האנושית מתוך הייצור הראשוני, ה- HANPP עלתה ל-23.8% מתוך ה"פוטנציאל הצמחי" (NPP<sub>0</sub>).<ref>[http://www.pnas.org/cgi/content/abstract/104/31/12942 Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems], H. Haberl, et al. 2007</ref>על פי הערכה, נכון לשנת 2000, האדם ניצל 34% מהשטח היבשתי שאינו מכוסה בקרח תמידי לצרכי [[חקלאות]] (12% לגידולי חקלאות ו-22% למרעה).<ref>Ramankutty, N.; Evan, A.T., Monfreda, C. and Foley, J.A. (2008). "Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000". Global Biogeochemical Cycles 22: GB1003</ref> כמות זו נלקחת על חשבון [[אנרגיה]] שאינה זמינה יותר למינים אחרים, ויש לה השפעה ניכרות על [[מגוון המינים]]; על [[מחזור הפחמן|מחזורי פחמן]], [[מחזור המים|מים]] ו[[מחזור ביוגאוכימי|מחזורים אחרים]], על מאזן אנרגיה במערכת האקולוגית העולמית; ועל [[שירותי המערכת האקולוגית]].
+
סך הצריכה האנושית מתוך הייצור הראשוני, ה- HANPP עלתה ל-23.8% מתוך ה"פוטנציאל הצמחי" (NPP<sub>0</sub>).<ref>[http://www.pnas.org/cgi/content/abstract/104/31/12942 Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems], H. Haberl, et al. 2007</ref>על פי הערכה, נכון לשנת 2000, האדם ניצל 34% מהשטח היבשתי שאינו מכוסה בקרח תמידי לצרכי [[חקלאות]] (12% לגידולי חקלאות ו-22% למרעה).<ref>Ramankutty, N.; Evan, A.T., Monfreda, C. and Foley, J.A. (2008). "Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000". Global Biogeochemical Cycles 22: GB1003</ref> כמות זו נלקחת על חשבון [[אנרגיה]] שאינה זמינה יותר למינים אחרים, ויש לה השפעה ניכרת על [[מגוון המינים]]; על [[מחזור הפחמן|מחזורי פחמן]], [[מחזור המים|מים]] ו[[מחזור ביוגאוכימי|מחזורים אחרים]], על מאזן אנרגיה במערכת האקולוגית העולמית; ועל [[שירותי המערכת האקולוגית]].
    
===חלוקת צריכת הייצור הראשוני על פני ענפים ומדינות===
 
===חלוקת צריכת הייצור הראשוני על פני ענפים ומדינות===
 
{{הפניה לערך מורחב|אוכלוסיית העולם}}
 
{{הפניה לערך מורחב|אוכלוסיית העולם}}
צריכת היצור הראשוני העולמית מתחלקת בצורה שונה בין ענפים שונים - 58% לעץ ומוצריו - כולל עץ לבניה ועץ המשמש כדלק, 16% לבשר, 15% לצריכת קלוריות מהצומח, 3% לסיבים, 2.4% לחלב, 2.3% לנייר, ו1.4% לביצים.  
+
צריכת היצור הראשוני העולמית מתחלקת בצורה שונה בין ענפים שונים - 58% לעץ ומוצריו - כולל עץ לבניה ועץ המשמש כדלק, 16% לבשר, 15% לצריכת קלוריות מהצומח, 3% לסיבים, 2.4% לחלב, 2.3% לנייר, ו1.4% לביצים.
   −
המדינות בעלות צריכת הייצור הראשוני הגבוהות ביותר היו (לפי סדר יורד) [[סין]], [[ארצות הברית]], [[הודו]], ברזיל, אינדונזיה, רוסיה, קנדה, ניגריה, יפן, גרמניה וצרפת. כל המדינות בעלות [[אוכלוסיית העולם|אוכלוסייה גבוהה]] הן בעלות צריכה גבוה של ייצור ראשוני- מבין 18 המקומות הראשונים, המדינות היחידות שאינן בעלות אוכלוסייה גבוהה הן קנדה ומאלזיה. [http://sedac.ciesin.columbia.edu/es/HANPP_country_product.zip]
+
המדינות בעלות צריכת הייצור הראשוני הגבוהות ביותר היו (לפי סדר יורד) [[סין]], [[ארצות הברית]], [[הודו]], ברזיל, אינדונזיה, רוסיה, קנדה, ניגריה, יפן, גרמניה וצרפת. כל המדינות בעלות [[אוכלוסיית העולם|אוכלוסייה גבוהה]] הן בעלות צריכה גבוהה של ייצור ראשוני- מבין 18 המקומות הראשונים, המדינות היחידות שאינן בעלות אוכלוסייה גבוהה הן קנדה ומאלזיה. [http://sedac.ciesin.columbia.edu/es/HANPP_country_product.zip]
 
   
 
   
18 המדינות בעלות צריכת הייצור הראשוני הגבוהה ביותר בעולם מכלות יחד 66% מהצריכה האנושית. שאר 200 המדינות מכלות יחד רק 33%. 18 המדינות האלה מהוות גם 66% מאוכלוסיית העולם, כך שאין הבדל מהותי בין קבוצת מדינות זו לבין קבוצת המדינות האחרות בהיבט של צריכת ייצור ראשוני לנפש (כאשר מסתכלים על 2 קבוצות המדינות כקבוצה). [http://sedac.ciesin.columbia.edu/es/HANPP_country_product.zip]
+
18 המדינות בעלות צריכת הייצור הראשוני הגבוהה ביותר בעולם מכלות יחד 66% מהצריכה האנושית. שאר 200 המדינות מכלות יחד רק 18.33%. המדינות האלה מהוות גם 66% מאוכלוסיית העולם, כך שאין הבדל מהותי בין קבוצת מדינות זו לבין קבוצת המדינות האחרות בהיבט של צריכת ייצור ראשוני לנפש (כאשר מסתכלים על 2 קבוצות המדינות כקבוצה). [http://sedac.ciesin.columbia.edu/es/HANPP_country_product.zip]
 
  −
ברוב המדינות בעלות צריכה גבוה של ייצור ראשוני, הסיבה היא אוכלוסייה גדולה, ובהן הצריכה לנפש נעה בין 0.9 ו-0.7 טונות פחמן בשנה, בהודו ובנגלדש  בהתאמה, לבין ערכים של 2.5 טונות לאדם בגרמניה, צרפת, אינדונזיה ורוסיה. הצריכה הנמוכה יחסית בגרמניה וצרפת רומזת על כך שניתן לקיים רמת חיים גבוה גם בערכים אלה. לעומת זאת, הצריכה השנתית לאדם בכמה מדינות גבוהה בהרבה - 3 טונות בברזיל, 4 טונות בארצות הברית, 5 במלזיה, ו-9 טונות בקנדה.[http://sedac.ciesin.columbia.edu/es/HANPP_country_product.zip]
  −
 
  −
במדינות העניות יותר כמו גם בקנדה צריכת עץ היוותה 70-80% מהצריכה של הייצור הראשוני. בעוד שבמדינות כמו גרמניה וצרפת היא היוותה רק כ 30% וביפן 25%. בקרב רוב המדינות העשירות יותר כמו ארצות הברית, צרפת גרמניה ויפן צריכת [[בשר|הבשר]] כאחוז מהייצור הראשוני גבוהה יותר מהממוצע העולמי (וכן במדינות ביניים כמו רוסיה, סין, ומקסיקו), ובחלקן גם צריכת המזון הצמחי גבוהה יותר. במדינות העניות יותר וביפן צריכת המזון הצמחי עמדה על כ-20-25% מהצריכה הראשונית האנושית. במדינות העשירות גם צריכת ה[[נייר]] גבוהה יחסית לממוצע העולמי (5%)  וביפן היא מגיע ל-14% מסך צריכת הייצור הראשוני במדינה.  [http://sedac.ciesin.columbia.edu/es/HANPP_country_product.zip]
      +
ברוב המדינות בעלות צריכה גבוהה של ייצור ראשוני, הסיבה היא אוכלוסייה גדולה, ובהן הצריכה לנפש נעה בין 0.9 ו-0.7 טונות פחמן בשנה, בהודו ובנגלדש  בהתאמה, לבין ערכים של 2.5 טונות לאדם בגרמניה, צרפת, אינדונזיה ורוסיה. הצריכה הנמוכה יחסית בגרמניה וצרפת רומזת על כך שניתן לקיים רמת חיים גבוהה גם בערכים אלה. לעומת זאת, הצריכה השנתית לאדם בכמה מדינות גבוהה בהרבה - 3 טונות בברזיל, 4 טונות בארצות הברית, 5 במלזיה, ו-9 טונות בקנדה.[http://sedac.ciesin.columbia.edu/es/HANPP_country_product.zip]
    +
במדינות העניות יותר כמו גם בקנדה צריכת עץ היוותה 70-80% מהצריכה של הייצור הראשוני. בעוד שבמדינות כמו גרמניה וצרפת היא היוותה רק כ 30% וביפן 25%. בקרב רוב המדינות העשירות יותר כמו ארצות הברית, צרפת, גרמניה ויפן צריכת [[בשר|הבשר]] כאחוז מהייצור הראשוני גבוהה יותר מהממוצע העולמי (וכן במדינות ביניים כמו רוסיה, סין, ומקסיקו), ובחלקן גם צריכת המזון הצמחי גבוהה יותר. במדינות העניות יותר וביפן צריכת המזון הצמחי עמדה על כ-20%-25% מהצריכה הראשונית האנושית. במדינות העשירות גם צריכת ה[[נייר]] גבוהה יחסית לממוצע העולמי (5%) וביפן היא מגיע ל-14% מסך צריכת הייצור הראשוני במדינה. [http://sedac.ciesin.columbia.edu/es/HANPP_country_product.zip]
    
==קישורים חיצוניים==
 
==קישורים חיצוניים==

תפריט ניווט